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Abstract: China has long-term high PM2.5 levels, and its Oxidative Potential (OP) is worth studying as 

it may unravel the impacts of aerosol pollution on public health better than PM2.5 alone. OP and PM2.5 

are influenced by meteorological factors, anthropogenic emissions sources and atmospheric aging. 

Although their impact on PM2.5 have been studied, OP measurements only recently became available and 

on a limited scale, as they require considerable technical expertise and resources. For this, the joint 20 

relationship between PM2.5 and OP for a wide range of meteorological conditions and emissions profiles 

remain elusive. Towards this, we estimated PM2.5 and OP over China using the Danish Eulerian 

Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. It 

was found that higher values of PM2.5 and OP were primarily concentrated in urban agglomerations in 

the central and eastern regions of China, while lower values were found in the western and northeastern 25 

regions. Furthermore, the probability density function revealed that about 40% of areas in China had an 

annual average PM2.5 concentrations exceeding the Chinese concentrations limit; 36% of the regions 

have OP below 1 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3, 41% have OP between 1 and 2 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3, and 23% have 

OP above 2 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3. Analysis of the simulations indicate that meteorological conditions and 

anthropogenic emission contributed 46% (65%) and 54% (35%) to the PM2.5 concentration (OP) 30 

variability. The emission sensitivity analysis also highlighted PM2.5 and OP levels are mostly determined 

by secondary aerosol formation and biomass burning. 

Keywords: PM2.5; Oxidative potential; Meteorology; Anthropogenic emission sources; Probability 

density function 
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1. Introduction 

Fine particulate matter, with an aerodynamic diameter of less than 2.5 µm (PM2.5), is the primary 

atmospheric pollutant in China (Chen et al., 2021; Chen et al., 2021; Liu et al., 2023) with respect to 

human health. PM2.5 exposure in China for 2017 resulted in an estimated 1.8 (95% CI: 1.6, 2.0) million 

premature deaths (Liu et al., 2021). Many recent studies have suggested that the oxidative potential (OP) 40 

of PM2.5 (the ability of PM2.5 to produce reactive oxygen species (ROS) to in-vitro that consume 

intracellular antioxidants; (Campbell et al., 2021)) may better explain the negative impact of PM2.5 

exposure on human health than the well-established metric of mass concentrations (Yu et al., 2019; Gao 

et al., 2020). This is because exposure to high levels of OP (from compounds such as quinones and 

soluble transitional metals) induces an excess production of ROS in cells and lead to oxidative stress (OS) 45 

effects and ultimately trigger inflammation and disease. Therefore, reducing PM2.5 pollution and its 

associated OP (the volume-normalized dithiothreitol activity) are critical to addressing China's 

environmental and environmental health issues. 

Anthropogenic emissions, as the main source of PM2.5 pollution and environmental health risks, have 

been studied extensively (Chen et al., 2019; Liu et al., 2022). Zhu et al. (2018) and Pui et al. (2014) 50 

summarized the studies on the PM sources in China and reported that secondary inorganic aerosols (SIA), 

industry, residential combustion, biomass burning, industry, and transportation are the main source 

categories in China in the historical and future business-as-usual scenarios. Due to the significant 

influence of various sectors on PM2.5 emissions, and research (Liu et al., 2018; Liu et al., 2020) 

indicating a close association between PM2.5 and OP, the connection between OP, serving as a toxicity 55 

indicator for PM2.5, and its sources (Liu et al., 2020) is becoming increasingly crucial and the topic of 

numerous studies. For instance, Yu et al. (2019) used the dithiothreitol (DTT) assay to measure the PM2.5 

samples in Beijing throughout the year and identified vehicle emissions as the main contributing source 

based on the source analysis of OP. However, studies conducted in three coastal cities of the Bohai Sea 

region (Liu et al., 2018) and in Nanjing (Zhang et al., 2023) using the same DTT assay indicated that 60 

coal combustion was the most active source of OP. Together, these studies suggest that obtaining the 

spatial distribution characteristics of PM2.5 and OP and their links to emission sources, is of paramount 

importance for implementing region-specific control measures. 
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Apart from anthropogenic emissions, meteorological conditions (i.e., temperature, humidity, wind speed, 

precipitation) also play a crucial role in the formation, accumulation, transformation, and dispersion of 65 

PM2.5 (Liu et al., 2022; Liu et al., 2022). Utilizing a multiple linear regression model, Gong et al. (2022) 

conducted an analysis of the trends of meteorological elements and PM2.5 levels across various regions 

in China from 2013 to 2020. Furthermore, they separated and quantified the impacts of meteorological 

factors and emissions on these trends. The findings indicate that meteorology alone can account for 

approximately 20~33% of the variability in PM2.5 levels. Xing et al. (2023) conducted a study in the 70 

Shenzhen region using DTT, ascorbic acid (AA), and glutathione (GSH) OP assays. They analyzed 

meteorological conditions and PM2.5 chemical composition to understand how the prevalence of 

monsoons in winter (northern and northeastern winds) and summer (southern and southeastern winds) 

affected the sources and contributed to the seasonal variation in PM2.5 composition and OP (mass-

normalized). Similarly, Molina et al. (2023) and Wang et al. (2019) revealed that meteorological 75 

conditions indirectly influence OP (volume-normalized and mass-normalized) through their impact on 

the chemical properties of the components. Ainur et al. (2023) employing a DTT assay, investigated 

outdoor health risks associated with atmospheric particulate matter in Xi'an, find a positive correlation 

between winter OP (volume-normalized) and relative humidity. Although several studies have identified 

linkages between meteorological conditions and PM2.5/OP, quantitative assessment of meteorological 80 

conditions to both PM2.5 and OP variability is lacking. 

As of the present, research on the influence of both meteorological conditions and anthropogenic 

emissions on OP primarily relies on measurement methods (Yu et al., 2019; Gao et al., 2020; Campbell 

et al., 2021), such as DTT, AA, and GSH, which are difficult and costly to test and hard to provide the 

spatial distribution of OP comprehensively. Although mechanistic models of OP do exist (Shahpoury et 85 

al., 2024), their links to experimental metrics of OP are qualitative. For this, we propose a hybrid 

approach combing existing observations of OP with a chemistry transport model (CTM). So, using OP 

from assays and their observed links to sources and chemical constituents can then be parameterized and 

implemented in CTM for a comprehensive assessment of OP exposure over large areas and time periods.  

This study quantifies the contribution of meteorological and anthropogenic emission factors (i.e., coal 90 

combustion, biomass burning, secondary aerosol formation that originate from a series of atmospheric 

reactions, industry, and transportation source) to OP and PM2.5 levels throughout China with the Danish 

Eulerian Hemispheric Model (DEHM) model. The study hence provides a method for calculating OP 
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across China and using OP as an indicator to assess the impacts of anthropogenic emission sources on 

human health in China. 95 

2. Materials and methods 

2.1 Methodological flow 

The research strategy of this study consists of three main parts: model setup, spatial distribution 

characteristic analysis, and quantification of meteorological conditions and anthropogenic emissions' 

contributions (Figure 1). In the first part, DEHM was employed to obtain hourly pollutant concentrations, 100 

followed by model evaluation, where the numerical weather prediction model WRF v4.1 (Skamarock et 

al., 2008) driven by ERA5 was used as meteorological input to DEHM and with exactly same spatial 

setup for China as in DEHM. Sensitivity experiments were designed for meteorological conditions, 

emission inventories, and anthropogenic emission sources. From these simulations, the spatial-scale 

estimation of OP was conducted using model outputs and the relationship between OP (this study focuses 105 

on the volume-normalized dithiothreitol activity) and PM2.5 concentrations from various anthropogenic 

sources (Zheng et al., 2018; Tong et al., 2018; Yun et al., 2020; MEE, 2020; Wang et al., 2020; Tang 

et al., 2020; Lin et al., 2021; Chen et al., 2022).  
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Figure 1. Schematic diagram of the study strategy; NME, NMB, r, and OP are normalized mean error, 

normalized mean bias, correlation coefficient, and oxidative potential, respectively. 

In the second part, the spatial distribution characteristics of PM2.5 and OP were determined using 

probability density functions (PDF) and spatial distribution maps. In the third part, quantitative analysis 

was conducted based on the simulation results from the sensitivity experiments to determine the extent 115 

of influence of meteorology and emissions on PM2.5 and OP, as well as the primary sources of PM2.5 and 

OP. 

2.2 Model setup 

The DEHM can well capture many features of PM and its precursors' changes in large-scale space 

(Christensen, 1997; Brandt et al., 2012; Im et al., 2019). To date, the DEHM model has been widely 120 

used in air pollution and health risk assessment research in Europe and Asia (Brandt et al., 2013a; b; 

Zare et al., 2014; Geels et al., 2015; Im et al., 2018; Im et al., 2019; Lehtomäki et al., 2020; Cramer 

et al., 2020; Liu et al., 2021; Geels et al., 2021; Thomas et al., 2022; Im et al., 2023), but this will be 

the first time that DEHM is applied to estimate OP. Thus, The DEHM model system was used to simulate 

the pollutant concentrations in 2014 by using a two-way nested domain in this study (Kumar et al., 2016). 125 

A mother domain with a resolution of 150 km × 150 km was employed on a polar stereographic projection, 
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true at 60°N to cover the entire Northern Hemisphere. The nested domain covered the whole of China 

consisting of 150 × 150 grid cells with a resolution of 50 km × 50 km. Vertically, there were 29 unevenly 

distributed layers, with the highest level reaching 100 hPa, and the lowest layer was approximately 20 m 

in height. The meteorological fields were simulated using the WRF model (Skamarock et al., 2008)  130 

with the same domain and resolution driven by global reanalysis as ERA5 or global climate data from 

CESM. The time resolution of the DEHM model output is one hour. The gas-phase chemistry module 

included 66 species, 9 primary particles (including natural particles such as sea salt), and 138 chemical 

reactions (Brandt et al., 2012). The secondary organic aerosols (SOA) were calculated using the 

volatility basis set (see details in Im et al. (2019)). In addition to the anthropogenic emissions, DEHM 135 

also includes emissions from biogenic emissions, such as vegetation, sea salt, lightning, soil, etc. The 

current version of the DEHM model does not include wind-blown, resuspended dust emissions or road 

dust. 

In the current study, the DEHM model used anthropogenic emissions from the Emissions Database for 

Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP) database and 140 

biogenic emissions are calculated online based on the Model of Emissions of Gases and Aerosols from 

Nature (MEGAN) (see details in Im et al. (2019)). 

2.3 Estimation of OP  

Most of current data on OP of PM2.5 in China are obtained by means of measurement, and the research 

objects are basically limited to specific cities, which to some extent hinders the conduct of research on 145 

OP in a large-scale region. Considering that Liu et al. (2018) collected samples across four seasons from 

multiple representative locations in China, their developed OP prediction model (Equation (1)) can 

support us in estimating OP in China, thereby exploring the spatial distribution characteristics of OP and 

the contributions of different anthropogenic sources to OP. In the present study, we have used this 

relationship, in combination with the sensitivity simulations (section 2.4), to calculate the OP.  150 

𝑂𝑃 = 0.088 × 𝑟𝑒 + 0.076 × 𝑏𝑖 + 0.041 × 𝑠𝑒 + 0.034 × 𝑖𝑛 + 0.017 × 𝑡𝑟 (1) 

where, 𝑟𝑒 , 𝑏𝑖 , 𝑖𝑛 , and 𝑡𝑟  represent the primary PM2.5 concentrations for coal combustion, biomass 

burning, industry source, and transportation source, respectively. In this study, the coal combustion is 

primarily from heating during the local cold season. Biomass burning includes open burning of 

agricultural biomass, domestic biomass burning for cooking and heating, and biomass burning from 
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power plants. Industry source is primarily from specific industry processes. Transportation source 155 

primarily comes from pipe emissions. 𝑠𝑒 (secondary aerosol formation) refers to the concentrations of 

secondary organic and inorganic (SOA and SIA, respectively) components. It's worth mentioning that 

secondary aerosol formation originates from a series of atmospheric reactions. Some identified sources 

(i.e., coal combustion, biomass burning, industrial processes, and transportation) may generate secondary 

inorganic and organic aerosols through the emission of their precursor components. Therefore, 160 

coefficient reflect the intrinsic OP of each source. 

 

2.4 Sensitivity scenarios 

2.4.1 Relative contributions from meteorological conditions and emissions 

Table 1 summarizes the scenarios for assessing the relative contributions of meteorological conditions 165 

and emissions to PM2.5 and OP variability in 2014. Scenarios C1 and C2 used the same meteorological 

reanalyse dataset (ERA5) as input to WRF, while Scenario C3 utilized CESM climate model based 

meteorological data as input. ERA5 (Hersbach et al., 2020; ERA, 2023) is a global reanalysis dataset 

that is based on the assimilation of historical observations and model data. CESM (2023), on the other 

hand, is a global climate and Earth system model supported by the US National Science Foundation, and 170 

its meteorological outputs serve as inputs for the WRF model as well. CESM version 2.1.1 (Danabasoglu 

et al., 2020) was first ran from 1850-2015 with the standard input component set BHISTcmip6 on 

f09_g17 resolution (i.e., 0.9°x1.25° resolution). Scenarios C2 and C3 employed the Eclipse V6 emissions 

inventory, while Scenario C1 used the EDGAR-HTAP inventory.  

The ECLIPSE project by the International Institute for Applied Systems Analysis (IIASA) aims to 175 

generate a global gridded anthropogenic emission inventory for various emission scenarios. The 

Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model has been employed to 

estimate emissions using source characteristics and emission factors at a resolution of 0.5° x 0.5° latitude-

longitude (Upadhyay et al., 2020; Eclipse, 2020). The following sector-layers are available: energy, 

industry, solvent use, transport, domestic combustion, agriculture, open burning of agricultural waste, 180 

waste treatment. a number of scenarios are provided for which the key economic assumptions and energy 

use originate from IEA World Energy Outlook (IEA, 2011), the POLES model, or Energy Technology 

Perspectives (IEA, 2012) for the period 2010-2050, while statistical data for the period 1990-2010 came 
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from IEA. For agriculture the FAO databases and long-term global projections were used (Alexandratos 

et al., 2012). It is noteworthy that this inventory takes into account China 13th 5-year plan. The 185 

EDGAR-HTAP (Joint et al., 2011; Crippa et al., 2023) emission inventory endeavors to employ official 

or scientific inventories within a national or regional scale, with a spatial resolution of 0.1° × 0.1°. The 

temporal coverage spans from the year 2000 to 2018. EDGAR-HTAP comprehensively accounts for all 

major emission sectors, including residential, transportation, industrial, energy, and agricultural sectors. 

Equations (2~5) were used to quantitatively evaluate the contributions of meteorological conditions and 190 

emission inventories. 

Con(Met) =
𝐶2 − 𝐶3

𝐶3

 
(2) 

Con(Emi) =
𝐶1 − 𝐶2

𝐶2

 
(3) 

NCon(Met) =
abs(Con(Met))

abs(Con(Met)) + abs(Con(Emi))
 

(4) 

NCon(Emi) =
abs(Con(Emi))

abs(Con(Met)) + abs(Con(Emi))
 

(5) 

where, 𝐶1 , 𝐶2  and 𝐶3  represent the PM2.5 concentrations and OP from scenarios C1, C2 and C3, 

respectively. Con(Met) represents the impact of changing meteorological datasets on changes in PM2.5 

and OP. Con(Emi) represents the impact of changing emission inventory on changes in PM2.5 and OP. 

abs represents the absolute value. NCon(Met) and NCon(Emi) represent the normalized contributions of 195 

meteorology and emission. 

Table 1. Emission inventory and meteorological datasets in three simulation scenarios. 

Scenarios Emission inventory Meteorological datasets 

C1 EDGAR-HTAP ERA5 

C2 Eclipse V6 ERA5 

C3 Eclipse V6 CESM 

2.4.2 Relative contributions from individual emissions 

As mentioned above, OP’s main source contributions include five parts,  i.e., coal combustion, biomass 

burning, secondary aerosol formation, industrial sources, and transportation sources (Equation (1)), we 200 

conducted perturbation experiments targeting these five sources to quantitatively assess their 

contributions to PM2.5 concentration and OP (Figure 2). These experiments were carried out within the 

three scenarios proposed in Section 2.4.1, and we performed a total of 15 runs. Under the non-

https://doi.org/10.5194/egusphere-2023-2615
Preprint. Discussion started: 7 December 2023
c© Author(s) 2023. CC BY 4.0 License.



 10 of 31 

 

perturbation condition (referred to as the NPC case), all aforementioned emission sources were 

considered. Under the perturbation condition (referred to as the PC case), reduction designs were 205 

implemented for emissions from coal combustion, biomass burning, industrial sources, and 

transportation sources. The emission from each individual source is reduced by 30%. Notably, to estimate 

the PM2.5 concentrations and OP from coal and biomass burning, it is necessary to obtain the percentage 

contributions of PM2.5 emissions from coal combustion for residential heating, domestic biomass burning 

for cooking and heating to PM2.5 emissions of the residential sector, respectively, as well as the 210 

percentage contributions of PM2.5 emissions from biomass combustion in power plants to the total PM2.5 

emissions from the power sector. The percentage contributions of each anthropogenic source can be 

estimated using Equations (6~8). 

𝑃𝐶𝑟𝑒_𝑗
=

𝐸𝑟𝑒_𝑗

𝐸𝑟𝑒

 
(6) 

𝐸𝑝𝑝_𝑏𝑖
= 𝐸𝐹 × 𝐹𝑄 (7) 

𝑃𝐶𝑝𝑝_𝑏𝑖_𝑐𝑓
=

𝐸𝑝𝑝_𝑏𝑖
+ 𝐸𝑝𝑝_𝑐𝑓

𝐸𝑝𝑝

 
(8) 

where, 𝑃𝐶𝑟𝑒_𝑗
 denotes the percentage contribution of PM2.5 emissions from the residential subsector j 

(including coal cooking, coal heating, biomass cooking, biomass heating, clean energy, and 215 

nonresidential) to the total PM2.5 emissions from the residential sector. 𝐸𝑟𝑒_𝑗  represents the PM2.5 

emissions from the residential subsector j, while  𝐸𝑟𝑒  represents the total PM2.5 emissions from the 

residential sector. The values of 𝐸𝑟𝑒_𝑗 and 𝐸𝑟𝑒 are obtained from the literature (Yun et al., 2020). 𝐸𝑝𝑝_𝑏𝑖
 

refers to the PM2.5 emissions from biomass power plants, 𝐸𝐹  refers to the PM2.5 emission factor of 

biomass power plants, and 𝐹𝑄 refers to the fuel quantity. 𝑃𝐶𝑝𝑝_𝑏𝑖_𝑐𝑓
 refers to the percentage contribution 220 

of PM2.5 emissions from biomass power plants and coal-fired power plants to the PM2.5 emissions of the 

power plants. 𝐸𝑝𝑝_𝑐𝑓
 refers to the PM2.5 emissions from coal-fired power plants, and 𝐸𝑝𝑝 refers to the 

PM2.5 emissions from power plants. 𝐸𝐹, 𝐹𝑄, 𝐸𝑝𝑝_𝑐𝑓
, and 𝐸𝑝𝑝 are obtained from the literature (Zheng et 

al., 2018; Tong et al., 2018; Yun et al., 2020; MEE, 2020; Wang et al., 2020; Tang et al., 2020; Lin 

et al., 2021; Chen et al., 2022). More and more studies (Hodan et al., 2004; Chen et al., 2018; Zhang 225 

et al., 2022) showed that in China, the proportion of secondary and primary PM2.5 mass to the total PM2.5 

mass is close, so we assume that they account for 50% respectively. Figure 2 showed the emission 

reduction design for perturbed emissions. 
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Figure 2. Emission reduction design for perturbed emissions; a was obtained from the literature (Yun et al., 230 

2020),  b were obtained from the literature (Zheng et al., 2018; Tong et al., 2018; Yun et al., 2020; 

MEE, 2020; Wang et al., 2020; Tang et al., 2020; Lin et al., 2021; Chen et al., 2022). 

Furthermore, the PM2.5 concentration for each sector is calculated using Equations (9~11).  

𝐶𝑃,𝑖 =
𝐶𝑁𝑃𝐶,𝑖 − 𝐶𝑃𝐶,𝑖

30%
 

(9) 

𝐶𝑃,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑃𝑀2.5 = 𝐶𝑃,𝑡𝑜𝑡𝑎𝑙 𝑃𝑀2.5 − 𝐶𝑃,𝑆𝐼𝐴 − 𝐶𝑃,𝑆𝑂𝐴 (10) 

𝐶𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 𝐶𝑁𝑃𝐶,𝑆𝑂𝐴 + 𝐶𝑁𝑃𝐶,𝑆𝐼𝐴 (11) 

where, i refers to the type of pollutants, i.e., total PM2.5, SOA, SIA, and primary PM2.5. 𝐶𝑁𝑃𝐶,𝑖 represents 

concentrations of the pollutant i in the NPC case. 𝐶𝑃𝐶,𝑖 represents concentrations of the pollutant i in the 235 

PC case. 𝐶𝑃,𝑖  represents concentrations of the pollutant i by the specific emission sector P which is 

perturbed (perturbation sectors P include coal combustion, biomass burning, industry, traffic source). 

𝐶𝑃,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑃𝑀2.5  represents concentrations of primary PM2.5 by the perturbation sectors P. 𝐶𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 

represents PM2.5 concentrations by the secondary aerosol formation. 

2.5 Probability density function 240 

Taking into account the substantial spatial heterogeneity of PM2.5 concentration and OP, we employ 

probability distribution functions (PDF) to characterize the statistical distribution characteristics of PM2.5 
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concentration and OP across China. This offers a more generalized and robust probability for criteria 

limits. In this study, all three functional types (Lognormal, exponential, and Gamma) were tested for 

annual average of PM2.5 concentrations and OP at the monitoring stations. To determine the 245 

representative distributions for the datasets, we further performed goodness-of-fit tests such as the Sum 

of Squared Error (SSE) and the Kolmogorov-Smirnov (K-S) test (de Melo et al., 2000), using the fitter 

package in Python.  

3. Results and discussion 

3.1 Model evaluation 250 

The hourly observation data was obtained from the Ministry of Ecology and Environment of China (MEE, 

2014). The MEE website first released PM2.5 measurement data in January 2013. In accordance with the 

Chinese environmental protection standards, the hourly PM2.5 concentrations are measured using the 

micro-oscillation balance method and beta absorption method, with an uncertainty of less than 

5 𝜇𝑔 𝑚−3 (Zeng et al., 2021). The PM2.5 monitoring stations are primarily distributed in urban areas, 255 

particularly in major metropolitan areas of China (Zeng et al., 2021). In 2014, the observation stations 

were mainly concentrated in eastern China, while stations in western China are limited. Therefore, in the 

present study, we also evaluated with the gridded annual-mean global reanalysis Dalhousie surface PM2.5 

dataset (van Donkelaar et al., 2021), which combines satellite retrievals of aerosol optical depth, 

chemical transport modeling, and ground-based measurements for the period 1998-2019. The Dalhousie 260 

dataset compensated for the non-uniform distribution spatially of observation stations to 

comprehensively evaluate the performance of the DEHM model. The density scatter plot of model 

performance and evaluation based on annual mean MEE observations and the Dalhousie dataset were 

shown in Figure 3. Overall, the model performance in terms of correlation coefficient (R) and normalized 

mean error (NME) calculated based on annual mean observations met the performance criteria suggested 265 

by Emery et al. (2017) (NME<0.5, R>0.4), and the normalized mean bias (NMB) was also close to the 

performance criteria suggested by Emery et al. (2017) (NMB<±0.3). Compared to the observations, the 

model performance in terms of R, NME, and NMB calculated based on the Dalhousie dataset was slightly 

poorer but still close to the performance criteria suggested by Emery et al. (2017). Therefore, the 

simulated annual mean PM2.5 concentrations is considered reliable. 270 
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Figure 3. Density scatterplots of model performance and validation for China based on (a) MEE observations 

and (b) the Dalhousie dataset.  

To verify the spatial accuracy, a comparison of the spatial distribution of simulated and observed PM2.5, 

both from MME and Dalhousie, was conducted. Figure 4 showed the spatial distribution of the difference 275 

between simulated and MME observed values (denoted as 𝑑𝑖𝑓𝑓𝑠𝑖−𝑜𝑏) (Figure 4a) and same for Dalhousie 

dataset (denoted as 𝑑𝑖𝑓𝑓𝑠𝑖−𝐷𝐻) (Figure 4b). Both Figure 4a and Figure 4b indicated that the majority of 

regions (northeastern, central, and eastern China) exhibited differences ranging from -18 𝜇𝑔 𝑚−3 to 0 

𝜇𝑔 𝑚−3. However, the PM2.5 concentrations in western China are largely underestimated, and the region 

with the worst performance has a difference reaching up to -54 𝜇𝑔 𝑚−3. This is mainly due to the lack 280 

of mineral dust emissions in the DEHM model, which is one of the main sources of pollutants in western 

China. This also explains the poorer performance shown in Figure 3b. Considering that we focus on the 

impact of anthropogenic emission sources on PM2.5 concentrations and OP due to their health effects, 

and that the vast majority of anthropogenic emission sources and populations are concentrated in central, 

eastern, and northeastern China, the well performance of DEHM model in these areas demonstrate its 285 

ability to support us exploring the role of different anthropogenic emission sources on PM2.5 

concentrations and OP in various regions, thereby identifying the main anthropogenic emission sources.  
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Figure 4. Spatial distribution of differences between (a) observations and (b) the Dalhousie dataset, and 

simulations. 290 

Similarly, the model performance over time scales was also investigated. Scatter density plots and 

distribution characteristics of monthly average observations and simulations for all monitoring sites in 

2014 were depicted in Figure S1 and Figure 5, respectively, with Figure S1a~ Figure S1l representing 

January to December. The results indicated that the simulated values were in good agreement with the 

observations from June to September. Although the model underestimated PM2.5 concentrations in other 295 

months, its performance in terms of R and NME met the performance standards recommended by Emery 

et al. (2017) in all months except for December. We conclude that the model performs well in simulating 

the seasonal variation of PM2.5 concentrations. 
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Figure 5. Violin plots of monthly average observations and simulations averaged over various observation 300 

stations; The red and blue colors represent the statistical distribution of simulated and observations, 

respectively; The width of the violin represents the sample size; The solid black line inside the violin indicates 

the median. The upper and lower dashed black lines within the violin indicate the upper quartile (the 75th 

percentile) and lower quartile (the 25th percentile), respectively. 

3.2 Spatial distribution characteristics of PM2.5 and OP 305 

In order to determine the spatial distribution characteristics of PM2.5 concentrations and OP, we explored 

the spatial distribution of both in scenario C1, as shown in Figure 6a and 6b respectively. The findings 

demonstrated spatial clustering characteristics in PM2.5 concentrations and OP. High PM2.5 

concentrations and High OP are mainly located in central and eastern urban clusters such as the Beijing-

Tianjin-Hebei region, the Shandong Peninsula, the middle reaches of the Yangtze River, the Yangtze 310 

River Delta, and the Central Plains, which have experienced rapid urbanization, industrialization, and 

coal burning in winter, which lead to a large amount of pollutant emissions. Low PM2.5 concentrations 

and Low OP are mainly distributed in most urban areas of Xinjiang, Tibet, Qinghai, Gansu, Yunnan, 

Inner Mongolia, Northeast China, Pearl River Delta, Beibu Gulf, etc. 

Due to differences in city types, pollutant emission intensities, and pollutant chemical components in 315 

different regions, there are significant spatial heterogeneity in PM2.5 concentrations and therefore in OP. 

Due to high population density, socio-economic activities and winter heating needs of northern residents 

in China's right region, large amounts of anthropogenic emissions, especially from industry, 

transportation, coal burning and biomass burning, exacerbate PM2.5 and redox active component 

pollution. 320 

 

Figure 6. Spatial clustering of PM2.5 concentrations (a) and OP (b) in China. 
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To quantitatively analyze the regional distribution characteristics of PM2.5 concentrations and OP in 

China, we determined the distribution function that is suitable for a specific dataset (Table 3), 

investigated the frequency histogram (FH) of PM2.5 concentrations and OP, fitted the PDF, and then 325 

obtained the cumulative distribution function (CDF) by integrating PDF, as shown in Figure 7. It was 

found that the gamma distribution performed the best in fitting PM2.5 concentrations and OP from Table 

2. Considering the test results, the gamma distribution was used to explore the spatial distribution 

characteristics of PM2.5 concentrations and OP. Figure 7a depicted the probability distribution of PM2.5 

concentrations, while Figure 7b depicted the probability distribution of OP. The wide distribution interval 330 

indicated that both PM2.5 concentrations and OP have a similar and large spatial heterogeneity. According 

to the FH, the highest frequency density of PM2.5 concentrations ranges from 10.5 to 12.9 𝜇𝑔 𝑚−3; The 

maximum frequency density of OP ranges from 0.26 to 0.34 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3. This reflects the overall 

pollution levels of PM2.5 and OP in the Chinese region. Taking into account the annual average PM2.5 

concentrations limits set out in China's ambient air quality standard (AAQS, 2012), we focused on 335 

primary (15  𝜇𝑔 𝑚−3) and secondary concentrations (35  𝜇𝑔 𝑚−3 ) limits. The PDF and CDF results 

showed that 84.8% of the total area was above the primary concentrations limit and 39.7% was above 

the secondary concentrations limit. In addition, 35.7% of regions in China have an OP below 1.00 

𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3, 41.3% have an OP between 1.00 and 2.00 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3, and 23.0% have an OP 

above 2.00 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3. 340 

Table 2. Goodness-of-fit test results 

Item  goodness-of-fit test  Gamma Lognormal Exponential 

PM2.5 

concentrations 

SSE 0.002  0.023  0.003  

KS_pvalue 0.329  0.000  0.000  

OP 
Sumsquare_error 0.654  0.746  1.209  

KS_pvalue 0.231  0.271  0.000  

Bold values indicate the best results. 

*Note: 

SSE is Sum of Squared Error 

KS_pvalue is the P-value of the Kolmogorov-Smirnov test 
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Figure 7. Probability distribution of (a) PM2.5 concentrations and (b) OP in China 

3.3 Contributions of meteorological conditions and emission inventories to the variations in PM2.5 

and OP 345 

To determine the sensitivity of PM2.5 pollution and oxidation potential (OP) to meteorological conditions 

(emission inventories), this study compared scenarios C2 and C3 (C1) and investigated the impacts and 

contributions due to ERA5 and CESM (HTAP and Eclipse V6 emission inventories) on PM2.5 and OP. 

Figure 8 illustrated the spatial distribution maps of PM2.5 concentrations and OP under scenarios C1, C2, 

and C3. Figure 8a~8c represented PM2.5 concentrations under scenarios C1, C2, and C3, respectively, while 350 

figure 8 d~8f represented OP under the same scenarios. Figure 9a presented the annual average PM2.5 

concentrations and OP under different scenarios, and Figure 9b showed the relative contributions of 

meteorological conditions and emission inventories. From Figures 8 and 9, it can be observed that, 

compared to scenario C2, PM2.5 concentrations and OP are lower in the western region and slightly higher 

in some eastern areas under scenario C1, primarily due to changes in emission inventories attributed to 355 

the inclusion or exclusion of specific local sources during the compilation process. Compared to scenario 

C3, PM2.5 concentrations and OP are lower in the western region and higher in some eastern areas under 
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scenario C2, primarily attributed to meteorological contributions. For the entire China region, the 

transition in emission inventories from Eclipse V6 to HTAP resulted in an overall decrease in PM2.5 

concentrations of 1.55 𝜇𝑔 𝑚−3, approximately 7.61%, and a decrease in OP of 0.0339 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3, 360 

approximately 4.05%. The shift in meteorological data from CESM to ERA5 led to an increase in PM2.5 

concentrations of 1.22  𝜇𝑔 𝑚−3, approximately 6.4%, and an increase in OP of 0.0585 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3, 

approximately 7.5%. According to the normalization process using equations (4)~(5), meteorological 

conditions contributed approximately 45.6% to the variations in PM2.5 and approximately 65.0% to the 

variations in OP. Meanwhile, emission inventories contributed approximately 54.4% to the variations in 365 

PM2.5 and approximately 35.0% to the variations in OP. Our findings highlight the significance of the 

quality of model input data, including emission inventories and meteorological data, for model 

performance. 

 

Figure 8. Spatial distribution of PM2.5 concentrations and OP in different scenarios; (a)~(c) are PM2.5 370 

concentrations in scenarios C1, C2 and C3, respectively; (d)~(f) is the OP in scenarios C1, C2, and C3, 

respectively; The meteorological datasets (emission inventories) employed for scenarios C1, C2, and C3 are 

ERA5 (EDGAR-HTAP), ERA5 (Eclipse V6), and CESM (Eclipse V6), respectively 
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 375 

Figure 9. (a) Average annual PM2.5 concentrations and OP under different scenarios; (b) The relative 

contribution of meteorological conditions and emission inventories to PM2.5 and OP, with the outer circle 

representing PM2.5 and the inner circle representing OP; The meteorological datasets (emission inventories) 

employed for scenarios C1, C2, and C3 are ERA5 (EDGAR-HTAP), ERA5 (Eclipse V6), and CESM (Eclipse 

V6), respectively 380 

3.4 Contribution of anthropogenic emission sources to PM2.5 and OP 

Considering that anthropogenic emission sources play an important role in PM2.5 concentrations and OP, 

we explored the spatial distribution characteristics of PM2.5 and OP from different anthropogenic sources 

to reveal the reasons behind the spatial heterogeneity in PM2.5 concentrations and OP, as shown in Figure 

10. The spatial distribution of PM2.5 concentrations from coal combustion for residential heating, biomass 385 

combustion, secondary aerosol formation, industry, and transportation are shown in Figures 10a~10e, 

respectively, and same for OP are shown in Figures 10f~10j, respectively. It was evident that the spatial 

distribution features of PM2.5 concentrations and OP from each emission source closely resemble those 

in Figure 6, and they all adhere to the principle that the eastern region is higher than the western. 

Nonetheless, the PM2.5 and OP concentrations from various anthropogenic sources varied significantly 390 

across the two regions. 

As seen in Figure 10, secondary aerosol formation are the primary contributors to PM2.5 concentrations 

and OP. The main components of the secondary aerosol formation, such as sulfate, nitrate, ammonium 

salt, and water-soluble organic carbon (WSOC), are formed primarily from their precursor components, 

such as SO2, NOx, and volatile organic compounds (VOC), through a sequence of atmospheric reactions. 395 

This revealed that the role of secondary aerosol formation in OP is significant from their high contribution 

to mass and intrinsic OP. 
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Biomass combustion is mainly derived from open-air agricultural waste burning, residential biomass 

fuels used for heating and cooking, coal- and biomass-power plants burning (Zhang et al., 2017). It is 

worth noting that Chinese crops, especially corn straw, and power plants are mainly concentrated in 400 

central and eastern regions, northeast and part of the western region, which provides greater potential for 

biomass combustion in the eastern part of China. In addition, (Chen et al., 2023) demonstrated that 

aerosols emitted from biomass combustion significantly influenced the development of PBL by changing 

meteorological conditions, and subsequently led to the accumulation of PM2.5 concentrations. The 

increase of OP is also associated with carbonaceous aerosols (Liu et al., 2020). This means that biomass 405 

burning plays a significant role in regional pollution and environmental health risks. 

Coal burning increases secondary inorganic and organic aerosols in the air (Liu et al., 2018), which leads 

to stronger oxidative toxicity. Particularly, due to greater heating demand in locations with high 

population density and chilly winters, PM2.5 concentrations and OP linked to coal burning are higher. 

Industrial emissions mainly include glass manufacturing, fertilizer production, organometallic 410 

metallurgy plants and iron and steel industrial bases. This is one main source for metals. Considering the 

correlation between these transition metals and OP (Fang et al., 2017; Liu et al., 2018), China's four 

industrial zones (Liaozhong-South Heavy Industry Base, Beijing-Tianjin-Tangshan Industrial Base, 

Shanghai-Nanjing-Hangzhou Industrial Base, and Pearl River Delta Light Industry Base) are 

undoubtedly important contributors to PM2.5 and OP emissions from industrial sources. 415 

Transportation-related emissions encourage the accumulation of Fe, Cu, Mn, Zn, and other elements 

(Fang et al., 2017). Compared with other anthropogenic sources, Figure 10 demonstrated that the 

contribution of traffic sources to PM2.5 and OP is the lowest, mainly concentrated in Henan, Hebei, and 

Shandong. This is valid for the top three provinces in terms of vehicle particulate matter and nitrogen 

oxide emissions in 2014 according to China Annual Vehicle Pollution Prevention and Control Report 420 

(MEE, 2015). 
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Figure 10. Spatial distribution of PM2.5 concentrations and OP from different anthropogenic sources; (a)~(e) 

are PM2.5 concentrations derived from coal combustion for residential heating (PMre), biomass burning (PMbi), 

secondary aerosol formation (PMse), industry (PMin), and traffic (PMtr) respectively; (f)~(j) are the OP 425 

derived from coal combustion for residential heating (OPre), biomass burning (OPbi), secondary aerosol 

formation (OPse), industry (OPin), and traffic (OPtr) respectively. 

To determine the impact of anthropogenic emissions on PM2.5 and OP, we quantified their percent 

contribution (Figure 11). Secondary aerosol formation, biomass combustion, industrial, coal combustion 

for residential heating, and transportation sources contributed 47.6%, 21.3%, 21.3%, 5.7% and 4.2% to 430 

PM2.5, respectively. Secondary aerosol formation, biomass combustion, coal combustion for residential 

heating, industrial sources, and transportation sources contributed 58.0%, 21.0%, 11.1%, 8.6% and 1.2% 
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to OP, respectively. This means that secondary aerosol formation and biomass burning are the main 

sources of PM2.5 and OP.  

 435 

Figure 11. Percentage contribution of different anthropogenic sources. 

4. Conclusions 

This study established a spatial modelling for PM2.5 concentrations and OP, provided a method for 

calculating OP across China, and quantitatively assessed the impacts of meteorological conditions and 

anthropogenic emissions on PM2.5 and OP variability and levels in China.  The following conclusions 440 

can be obtained: 

 PM2.5 and OP exhibited spatial clustering characteristics, with higher values mainly located in the 

central and eastern urban areas. About 85% and 40% of the areas had PM2.5 annual average 

concentrations exceeding the first-grade concentrations limit (15  𝜇𝑔 𝑚−3)  and second-grade 

concentrations limit (35  𝜇𝑔 𝑚−3 ), respectively. Additionally, about 36% of the areas had OP 445 

concentrations lower than 1 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3 , while 23% of the areas had OP concentrations 

higher than 2 𝑛𝑚𝑜𝑙 𝑚𝑖𝑛−1 𝑚−3. 

 Variability in both PM2.5 and OP are influenced by a combination of meteorological conditions and 

emission inventories. Meteorological conditions contributed about 46% of PM2.5 variation and 65% 

of OP variation. The emission inventory contributed about 54% of the change in PM2.5 and about 450 

35% of the change in OP. 

 The percentage contributions of secondary aerosol formation, biomass burning, industry, coal 

combustion for residential heating, and traffic to PM2.5 were about 48%, 21%, 21%, 6%, and 4%, 
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respectively. The percentage contributions of secondary aerosol formation, biomass burning, coal 

combustion for residential heating, industry, and traffic to OP were approximately 58%, 21%, 11%, 455 

8%, and 1%, respectively. 

A main finding of this study is that meteorological variability is the prime driver of OP variability, and 

not emissions. Furthermore, secondary aerosol formation and biomass burning are the main sources of 

OP. Thus, air pollution strategies should focus more on biomass combustion and the emissions of the 

precursors taking part in the secondary aerosol formation, and it would be efficient to introduce special 460 

emissions controls during stagnation or other periods where OP accumulates. 
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